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This paper presents a theoretical and numerical investigation of the interaction between

sound waves and non-diffusive, quasi-one-dimensional, subsonic flows with only

steady heat communication. It is first shown that a steady heat communicating flow can

attenuate or generate sound even in the absence of mean flow acceleration. The relative

entropy inhomogeneities and the effect of steady heat communication on the incident

acoustic wave is then found. It is shown through scaling arguments that at high

frequencies mean flow acceleration effects are negligible and the only significant sound

generating mechanism involves steady heat communication. At low frequencies,

however, the two mechanisms are more comparable.

& 2010 Published by Elsevier Ltd.
1. Introduction

Sound production in fluid flows with simultaneous heat communication and acceleration has important application in
numerous engineering devices. These include rockets, gas turbines, heat exchangers and refrigerators, to name a few. In
these cases, sound often coexists with unsteady heat addition or removal, as well as hydrodynamic and temperature
fluctuations.

It has been known since Rayleigh [1] that unsteadiness in the communication of heat to or from a flow can generate or
attenuate sound. Ffowcs Williams and Howe [2] and Howe [3,4] also showed that the acceleration of density and entropy
inhomogeneities can be a sound source. As heat communicating flows are normally accelerating or decelerating, these
mechanisms are sometimes considered to be the main sound generating mechanisms in combusting flows [5–9]. There are
other sources of noise in combusting flows, such as those rising from viscous and diffusion effects [10,11], chemical
inhomogeneities [12] and flame front interactions [6].

Recently, Karimi et al. [13] considered a non-reacting, inviscid and non-heat conducting flow, and showed theoretically
and numerically that steady heat communication can generate sound. However, the origin of this sound generation was
not clear since their test cases included flows with both steady heat communication and steady flow acceleration. It is well
known that the interaction of sound with heat communicating flows can generate entropy disturbances [13–17]. Following
Howe [3], these disturbances can then generate sound as they are convected by the accelerating mean flow due to the
mean temperature gradient. Therefore, the sound generation in studies such as Karimi et al. [13] can either be by the
acceleration of these entropic disturbances or potentially involve additional sources.

Two duct flows are considered in this paper (Fig. 1). In each group both flows have identical upstream mean Mach
number M0, static temperature y0 and pressure p0. Two homogeneous, semi-infinite regions are located upstream and
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Fig. 1. Schematic of the heating configuration, (a) one-dimensional accelerating flow, (b) quasi-one-dimensional non-accelerating flow, l=1 m,

yt0 ¼ 600 K, ytl ¼ 1200 or 1800 K where yt is the stagnation temperature, unless stated otherwise.
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downstream of a region of steady heat communication, which have constant cross-sectional areas. The steady heat
communication is through external means and results in a linear increase or decrease in the mean stagnation temperature
from yt0

at x=0 to ytl
at x= l. Thus, the mean heat communication to the two flows is the same. In all cases studied

throughout this paper the unsteadiness in heat communication is zero. Further, as will be detailed in Section 3.1, the cross-
sectional area in Fig. 1b changes in such a way that the mean flow does not accelerate. The system is excited by a
downstream travelling acoustic wave I and the response is characterised by the reflected R and transmitted T acoustic
waves as well as an outgoing entropy disturbance Sl. These acoustic disturbances are given by

p0ðt,0Þ ¼ Re½expðiotÞðIþRÞ�,

u0ðt,0Þ ¼ Re½expðiotÞðI�RÞ1=r0c0�,

and

p0ðt,lÞ ¼ Re½expðiotÞðTexpð�iol=cÞÞ�,

where Re symbol indicates the real part.
In these equations the terms p (Pa), r (kg/m3), c (m/s), o (rad/s) and u (m/s) are respectively the static pressure, static

density, isentropic sound speed, frequency and flow velocity. In general any given property g may be split into a steady g

and disturbance quantity g0 such that g ¼ gþg0. Unless otherwise stated, throughout this paper the inlet and exhaust
stagnation temperature and length of the inhomogeneous region (l) are those specified in Fig. 1. Further, the configurations
in Fig. 1a and b are referred to as cases A and B respectively.

It should be noted that the flows shown in Fig. 1 are not intended to be closely representative of real flows. In particular,
the flow within a gas turbine combustor features unsteady heat release, strong turbulence and non-equilibrium chemistry,
to name a few. None of these are considered in this paper. In particular, unsteady heat release is a well-known and
significant sound source in combustion [5,6]. The relative magnitude of sound generation by steady versus unsteady heat
addition depends on the relative magnitude of the mean and unsteady sources, which is not the subject of this paper.
Rather, sound sources due only to steady heat communication and the acceleration that it can induce are examined over
temperature ratios that are representative of some devices.
2. Theoretical and numerical methods

2.1. Theory

2.1.1. Equations of motion

Consider the quasi-one-dimensional Euler equations applied to a calorifically perfect and ideal gas

q
qt
ðrAÞþ

q
qx
ðruAÞ ¼ 0, (1)

q
qt
ðruAÞþ

q
qx
ð½pþru2�AÞ ¼ p

dA

dx
, (2)
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ru2
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gp

g�1
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2
ru2

� �
uA

� �
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where Q (W/m) is the heat communication per unit length and g¼ 1:4 throughout this paper. The terms q (W/m3), g,
cp (J/kg K), s (J/kg K), and A (m2) are respectively the heat communication per unit volume, specific heat ratio, specific heat
capacity, entropy and the cross-sectional area.

It is important to note that although diffusive heat transfer has been neglected in the present problem, heat addition or
subtraction can still be achieved by heat communication through an external means. This is a reasonable approximation
for a reacting flow in the equilibrium chemistry limit and also for incident or emitted radiation.

2.1.2. Acoustic energy

The analysis presented in this paper is linear. It should be noted that in real flows interaction of flames with acoustics
can involve strong nonlinearity [18,19], but this usually appears in the flame dynamics rather than the acoustics. Consider
the acoustic energy balance for quasi-one-dimensional, non-diffusive, heat communicating flows derived by Bloxsidge
et al. [20], which extends Morfey’s earlier work [21]:

q
qt
ðeAÞþ

q
qx
ðEAÞ ¼D, (4)

where

e¼ p
02=2rc2

þru
02=2þup0u0=c2 (5)

is the acoustic energy density (J/m3) and

E¼ p0u0 þruu02þu2p0u0=c2
þup02=rc2 (6)

is the acoustic energy flux (W/m2). Bloxsidge et al. [20] expressed the acoustic energy source term D (W/m) as

D¼ ðruu0 þp0Þ
qAðg�1Þ

gp

q0

q
�

p0

p
�

u0

u

� �
þ u0 þ

up0

rc2

 !
A

rs0

cp
�

p0

c2

� �
u

du

dx
�

p0

r
dr
dx

� �
: (7)

Eqs. (1)–(3) can be combined to give

u
u

c2

du

dx
þ

1

r
dr
dx

� �
¼
g�1

g
q

p
: (8)

Thus, Eq. (7) can be rearranged in the following way:

D¼DuhcþDshcþDmfa, (9)

where

Duhc ¼
qAðg�1Þ

gp
ðruu0 þp0Þ

q0

q
, (10)

Dshc ¼�
qAðg�1Þ

gp
ðruu0 þp0Þ

p0

p
þ

u0

u

� �
�p0

u0

u
þ

p0

rc2

 !" #
, (11)

Dmfa ¼ Au
du

dx
u0 þ

up0

rc2

 !
rs0

cp
(12)

are respectively the source terms due to unsteady heat communication, steady heat communication and mean flow
acceleration. An alternative arrangement of source terms in terms of density disturbances is put forward in Appendix C.

With the arrangement in Eqs. (9)–(12) we consider two mechanisms which can generate sound in the absence of
unsteady heat communication (i.e. Duhc=0). First Dmfa describes sound generation by the acceleration of entropy
disturbances. The remaining terms then only depend on the steady heat communication and so are grouped as Dshc.
It is not clear how significant Dshc is compared to the well-established mechanism of acceleration of entropy inhomo-
geneities [3].

Eqs. (4)–(6) and (9) are applied over the inhomogeneous region in Fig. 1. The flux term in these equations was first
derived by Cantrell and Hart [22] for acoustic propagation in a moving medium with homogeneous mean flow. It is
therefore a well posed, acoustic flux in the upstream and downstream homogeneous regions, where acoustic and entropic
disturbances are decoupled [17]. Sound production within the inhomogeneous region can then be determined by
examining the balance of these acoustic fluxes in the homogeneous regions,

ElAl�E0A0 ¼

Z l

0
D dx: (13)

The integral of D over the inhomogeneous region can then be considered to be purely acoustic even though D at any point
within the inhomogeneous region may not be purely acoustic.
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2.2. Numerical solver

The present work solves Eqs. (1)–(3) in conservation form by using the dispersion-relation-preserving (DRP) scheme of
Tam and Webb [23]. The specific DRP scheme chosen uses an optimised, four level, time marching scheme and seven point
stencil for spatial differentiation. The choice of such a scheme ensures that the computed waves are a good approximation
of the exact Euler equations. Non-reflecting boundary conditions are implemented to ensure that the numerical domain
approximates an infinite domain. The exact boundary conditions follow the same formulation given by Poinsot and Lele
[24] to ensure that the incoming waves at each boundary are always zero. An exception to this is in the implementation of
the system excitation. The system can be forced by an incoming downstream travelling pressure or entropy wave at the
inlet. The amplitude of the system excitation is small enough to ensure that the system is always linear. Numerical
damping is employed to remove non-physical high-frequency waves from the solution. This is a modified version of the
scheme of Tam and Shen [25], and incorporates damping in regions of entropy discontinuity. All simulations are run with a
Courant–Friedrichs–Lewy number of 0.1. The number of grid points in the inhomogeneous region used in each simulation
is 601. Simulations are run for a sufficiently long time to ensure that no transients are present in the final results. This
solver has been validated on several problems, such as those presented by the authors in [13,26], as well as on the results
presented in this paper.
3. Results and discussion

3.1. Zero and low mean flow velocity

The cross-sectional area variation for the non-accelerating mean flow, case B, is found from the equations of motion. It
follows from Eqs. (1) and (2) that for a quasi-one-dimensional, constant mean velocity flow the mean pressure must
remain constant. The equation of state for an ideal gas then requires that y dy=dx¼�r dr=dx, which upon substitution
into Eq. (1) results in

1

A

dA

dx
¼

1

y
dy
dx
: (14)

Here, ytðxÞ ¼ yt0
þmx in which m (K/m) is a constant, is considered along the inhomogeneous region. Noting that

yt ¼ yþu2=2Cp and u is constant in case B, Eq. (14) can be integrated to give

AðxÞ

A0
¼

y0þmx

y0

, 0rxr l: (15)

The zero mean flow case is first considered. In this case the mean heat communication must be also zero and thus, the
temperature distribution becomes an initial condition for this non-diffusive flow. Eq. (4) then reduces to the classical
acoustic energy equation [27]. As required by the first law of thermodynamics, the net average classical acoustic energy
fluxes entering and leaving the region with mean temperature gradient must be the same [13,28] and therefore

Al

A0

r0c0

r lc l

T

I

� �2

þ
R

I

� �2

¼ 1: (16)

Hence, the acoustic energy reflection and transmission coefficients for zero Mach number are defined as SR ¼ ðR=IÞ2 and
ST ¼ ðAl=A0Þðr0c0=r lc lÞðT=IÞ2 respectively. Fig. 2 shows the analytically calculated frequency response of these coefficients
for this zero mean flow condition for cases A and B. The details of the derivation for the varying cross-sectional area flow
are in Appendix A, while that for constant cross-sectional flow has been presented by Karimi et al. [13].

Introduction of mean flow results in non-zero mean heat communication and also generation of entropy [13,15,17]. The
acoustic energy reflection and transmission coefficients are now defined using the flux term of Eq. (4) and take the form

SR ¼
ð1�M0Þ

2

ð1þM0Þ
2

R

I

����
����2, ST ¼

Al

A0

r0c0

r lc l

ð1þMlÞ
2

ð1þM0Þ
2

T

I

����
����2: (17)

Fig. 2 also shows the numerically calculated values of the reflection and transmission coefficients for an inlet Mach
number of 0.01. As can be seen, there is a good agreement between the low Mach number numerical simulations and
analytically calculated coefficients for zero mean flow. As perhaps expected, the amplitude of the acoustic energy reflection
coefficient is generally higher for the flow with varying cross-sectional area, since in this flow the mean temperature
gradient and the change in the flow cross-sectional area are both responsible for the sound reflection. Further, the phase of
the reflection and transmission coefficients for the cases A and B are identical at zero mean flow. This is because, in the
absence of mean flow, the phases of the reflection and transmission coefficients are determined by the adiabatic sound
speed which is the same in the two cases at a given axial position.
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3.2. Higher mean flow velocities

Increasing the inlet mean flow Mach number to 0.1 results in considerable sound attenuation in both cases A and B
(Fig. 3). This attenuation occurs for all forcing frequencies and is similar for the two cases.

The attenuation of sound for finite mean velocities can be also studied analytically at low forcing frequencies, in which
the heat communicating region can be considered acoustically compact (Appendix B). Fig. 4 shows the analytic compact
analyses for cases A and B and heated flows, with two different stagnation temperature ratios. Here, the sum of the
amplitudes of the acoustic energy reflection and transmission coefficients shows the fraction of the total incident acoustic
energy which has been dissipated in the heat communicating region. As can be seen, this sound attenuation increases for
the non-accelerating flow as the inlet Mach number increases, although in the accelerating flow the attenuation is more
pronounced. At sufficiently high M0, thermal choking of the accelerating flow occurs (M0 ¼ 0:38 and 0.29 for stagnation
temperature ratios of 2 and 3 respectively).

Fig. 5 shows the compact analytic analyses for two cooled flows. The case B flow now contracts. The flow cannot of
course choke, and overall sound production is now observed in both cases. Figs. 4 and 5 also include numerical results for
simulation at low forcing frequency (100 rad/s in these cases), which are in very good agreement with the analytical
compact results.

Fig. 6 extends this analysis numerically to higher forcing frequencies. This figure shows that both flows in cases A and B
attenuate sound by steady heating to a comparable extent for almost all forcing frequencies and inlet Mach numbers.
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However, at higher inlet Mach numbers and low frequency the accelerating flow shows more attenuation compared to that
at the same inlet Mach number and higher frequency. This is due to stronger generation of entropy disturbances at low
frequencies, and will be further investigated in the following section.

3.3. High and low frequency asymptotic behaviour

Karimi et al. [13] showed that when lc=l51 (where lc is the convective wavelength) and under acoustic excitation
there are negligible entropy disturbances in any steady heat communicating flow. It follows that in this limit Dmfa-0 and
the only existing sound generating mechanism is that by steady heat communication Dshc.

At the limit of zero frequency the generation of entropy is significant [13]. Thus, Dmfa is expected to be large at this limit.
To compare the relative significance of Dmfa and Dshc at low frequencies a new parameter O is defined:

O¼ 1=l

Z l

0
Dshc=Dmfa dx: (18)
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Fig. 7 shows the values of O in case A calculated for a range of inlet Mach numbers and varying excitation frequencies such
that lc=l¼ 2 always, where lc is based on the average mean flow velocity along the heat communicating region. At low
frequencies, the term Dshc is of the same order but stronger than Dmfa, with the former becoming more dominant as the
temperature ratio increases.

These arguments are consistent with the trend observed in Fig. 6. Consider for example M0 ¼ 0:1 at the highest
frequency shown in this figure, lc=lC0:06, and the total acoustic energy flux attenuation of the accelerating and non-
accelerating flows are very similar. The small difference between the two is due to different steady mean velocity and
pressure distributions in the two flows, which become more significant as the inlet Mach number increases. However, at
low frequency the accelerating flow shows more attenuation. Once again, this attenuation increases with inlet Mach
number and is due to acceleration of entropy disturbances at high Mach numbers as shown in Fig. 7.
3.4. Entropic forcing of case B flow

The rest of this paper is concerned with entropic excitation of the inhomogeneous region. Entropic excitation of the
inhomogeneous region can also generate sound for the case A flow, as shown by the authors in some detail in an earlier
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work [13]. This section shows analytically that there can be no sound generation by the inhomogeneous region for case B
flow and forcing by incident, convective, entropy disturbances.

Consider the equations of conservation of mass, momentum and energy (Eqs. (1)–(3)). Combining the equations of mass
and momentum reveals

qu

qt
þ

1

r
qp

qx
þu

qu

qx
¼ 0, (19)

and equations of mass, momentum and energy can be rearranged to give

qp

qt
�ðg�1Þu

qp

qx
þ
g
A

qðpuAÞ

qx
¼
ðg�1ÞQ

A
: (20)

Now, for case B flow du=dx¼ 0 everywhere. Linearising Eqs. (19) and (20) for non-accelerating flows then results in
respectively

qu0

qt
þ

1

r
qp0

qx
þu

qu0

qx
¼ 0, (21)

qp0

qt
¼�u

qp0

qx
�
g
A

dA

dx
ðpu0 þup0Þ�gp

qu0

qx
þ
ðg�1ÞQ

A
: (22)

Eqs. (21) and (22) only rely on p0, u0 and mean flow properties. Therefore, the solution of these equations which reveals the
acoustic field in the homogeneous regions is independent of incident density or entropy disturbances. Thus, incident
entropic forcing of case B flow cannot result in sound generation. Numerical simulations confirm this.

4. Conclusions

The generation of sound due to the interaction of incident acoustics and entropic disturbances with steady heat
communication was studied numerically and theoretically. Two sets of flows were considered with identical upstream
conditions and steady heat addition or heat removal. One of these flows was one-dimensional, and therefore accelerating,
whilst the other featured a varying cross-sectional area such that the mean flow velocity was constant. The numerical
simulation of these two flows was validated against the analytical results for zero mean flow and also compact non-zero
mean flow results.

It was first observed that incident acoustic energy was dissipated by both the accelerating and non-accelerating flows
with mean heat addition. The extent of this attenuation was more pronounced for the accelerating flow, but attenuation in
both cases was of the same order of magnitude and increased as the inlet Mach number increased. Conversely, mean heat
removal generated sound, and numerical solutions again agreed with the theory presented.

Asymptotic arguments showed that the generation of entropy disturbances were negligible at high frequencies and
therefore sound generation due to the acceleration of entropy disturbances approached zero. Thus, in this limit, the
generation/attenuation of sound in either of the accelerating and non-accelerating flows was exclusively through steady
heat communication.

Considering then the acceleration of either entropy or density disturbances, scaling analysis revealed that at high
frequencies and low Mach numbers the mean flow acceleration effect is weak compared to that by steady heat
communication. At low frequencies, however, the two sound generating mechanisms were observed to be more
comparable.
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Appendix A. Frequency response of a region with mean temperature gradient, varying cross-sectional and zero mean
flow

This section derives an analytical solution for the reflection and transmission of acoustic energy from a region with zero
mean flow, finite mean temperature gradient and varying cross-sectional area, satisfying Eq. (14). This builds heavily on
the work of Subrahmanyam and Sujith [29] and extends the approach presented in [13].

Subrahmanyam and Sujith [29] considered an inhomogeneous non-uniform duct with zero mean velocity and a known
relationship between the mean temperature and the duct cross-sectional area. They assumed harmonic solutions of the
form p0ðx,tÞ ¼ P0ðxÞexpðiotÞ, and expressed the acoustic wave equation as

d2P0

dx2
þ

1

A

dA

dx
þ

1

y
dy
dx

" #
qP0

qx
�
o2

gRy
P0 ¼ 0: (A.1)
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To solve Eq. (A.1) the following transformation was introduced

z¼
Z

dx

Ay
: (A.2)

Now consider the temperature and cross-sectional area distribution discussed in Section 3.1,

y ¼ y0þmx, A¼ hðy0þmxÞ, (A.3)

where h (m2/K) is A0=y0. Upon substitution of A and y from (A.3), relation (A.2) becomes

z¼
�1

mh

1

ðy0þmxÞ
: (A.4)

Eq. (A.1) can be rewritten as

d2P0

dz2
þðkA2yÞP0 ¼ 0, (A.5)

where k¼o2=ðgRÞ. New parameters a and k� are considered such that

A2y ¼ ðak�zÞn, (A.6)

where k� ¼ ðkÞ�1=n and for the present problem n=�3, k� ¼ ðgR=o2Þ
�1=3 and a¼�ðgRhm3=o2Þ

1=3. Eq. (A.1) transforms into

d2P0

dz2
þðazÞnP0 ¼ 0: (A.7)

Subrahmanyam and Sujith [29] introduced new variables as follows:

r¼ ðak�zÞ1=2v, P0 ¼ rvz, (A.8)

where v=1/(n+2). Substituting from Eqs. (A.2) and (A.6) into Eq. (A.8) results in

r¼ h1=3ðy0þmxÞ1=2, v¼�1: (A.9)

Substituting variables from Eqs. (A.8) and (A.9), reduces (A.7) into a standard Bessel’s differential equation

d2z

dr2
þ

1

r

dz

dr
þ a2k�v2

r2

� �
z¼ 0, (A.10)

where a¼ 2v=ðak�Þ ¼ 2=ðm3 � hÞ1=3. General solutions of the pressure and velocity disturbances are then

P0 ¼ sv½c1JvðbrÞþc2YvðbrÞ�, (A.11)

U0 ¼
i

ro
dr

dx
rv v

r
ðc1JvðbrÞþc2YvðbrÞÞþ

b
2
½c1ðJv�1ðbrÞ�Jvþ1ðbrÞÞþc2ðYv�1ðbrÞ�Y1þvðbrÞÞ�

� �
, (A.12)

where b2
¼ a2k. The boundary conditions which specify c1 and c2 are derived from the configuration of the problem. The

incident acoustic wave I in Fig. 1 has a velocity fluctuation such that U0ð0Þ ¼ e, where e is a constant. Further, Karimi et al.
[13] showed that the anechoic boundary condition for the cases such as the present configuration takes the form

P0ðlÞ ¼ r lc lU
0ðlÞ: (A.13)

Eqs. (A.11) and (A.12) then allow determination of the constants c1 and c2,

c2 ¼
EH

GH�KF
, c1 ¼

EK

FK�HG
, (A.14)

where

F ¼
�J�1ðbrð0ÞÞ

rð0Þ
þ
b
2
½J�2ðbrð0ÞÞ�J0ðbrð0ÞÞ�, (A.15)

G¼
�Y�1ðbrð0ÞÞ

rð0Þ
þ
b
2
½Y�2ðbrð0ÞÞ�Y0ðbrð0ÞÞ�, (A.16)

E¼�
ierð0Þr0o
drð0Þ=dx

, (A.17)

H¼ J�1ðbrðlÞÞþ
cl

o
drðlÞ

dx

iJ�1ðbrðlÞÞ

rðlÞ
�

icl

o
drðlÞ

dx

b
2
½J�2ðbrðlÞÞ�J0ðbrðlÞÞ�, (A.18)
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K ¼ Y�1ðbrðlÞÞþ
cl

o
drðlÞ

dx

iY�1ðbrðlÞÞ

rðlÞ
�

icl

o
drðlÞ

dx

b
2
½Y�2ðbrðlÞÞ�Y0ðbrðlÞÞ�: (A.19)

A.1. Reflection and transmission coefficients

Considering the upstream and downstream homogeneous regions and the relations between pressure, velocity and I, R

and T, it follows that

R

I

����
����¼ P0ð0Þ�r0c0U0ð0Þ

P0ð0Þþr0c0U0ð0Þ

����
����, (A.20)

T

I

����
����¼ P0ðlÞ

P0ð0Þþr0c0U0ð0Þ

����
����: (A.21)

Eqs. (A.14), (A.11) and (A.12) can then be used to calculate the reflection and transmission coefficients analytically.

Appendix B. Compact analysis of a region with non-zero mean flow

In this appendix, analytical expressions are derived for the reflection and transmission coefficients expressed in Eq. (17)
through application of the linearised equations of mass, momentum and energy to a compact inhomogeneous region in
case B. The equivalent analysis for the configuration shown in case A has been presented in Karimi et al. [13].

B.1. Momentum equation for a compact region with area change and constant mean velocity

Care must be taken when applying the momentum equation to a flow with area change in the compact limit. This
section derives the appropriate jump condition for a subsonic nozzle or diffuser with zero mean flow acceleration as
detailed in Section 3.1.

The quasi-one-dimensional linearised momentum equation is

q
qx
½p0AþðruAÞ0uþðruAÞu0� ¼ p0

dA

dx
: (B.1)

Considering the conditions of fixed mean flow velocity discussed in Section 3.1, Eq. (B.1) can be simplified to

q
qx

p0

p

� �
þgM

2 q
qx

u0

u

� �
¼ 0: (B.2)

The quasi-one-dimensional, equations of conservation of mass and energy can be combined to give

q
qx

1

M
2

u0

u
þ

1

M
2

p0

p
þðg�1Þ

u0

u

" #
¼ 0: (B.3)

Combining Eq. (B.3) with (B.1) reveals

p0

p
¼M

4 dM
2

dx

 !�1
q
qx

u0

u

1�M
2

M
2

 !" #
: (B.4)

Substituting Eq. (B.4) into Eq. (B.1) results in

gM
2 q
qx

u0

u

� �
þ

q
qx

M
4 dM

2

dx

 !�1
q
qx

u0

u

1�M
2

M
2

 !" #2
4

3
5¼ 0: (B.5)

Eq. (B.5) can be now simplified and solved for ðu0=uÞ, which after some algebra, reduces to

q
qx

u0

u

� �
¼ Z

d

dx
½ð1�M

2
Þ
g�1
�, (B.6)

where Z is a constant. Substituting for ðu0=uÞ from Eq. (B.6) into the momentum equation and solving, results in

ðp0l�p00Þ

p
¼ Z ðg�1Þ½ð1�M

2

l Þ
g
�ð1�M

2

0Þ
g
�g�g½ð1�M

2

l Þ
g�1
�ð1�M

2

0Þ
g�1
�

h i
: (B.7)

Finally, substituting for Z from (B.6) reveals the jump condition as

ðp0l�p00Þ

gp
þ
ðu0l�u00Þ

u
¼

u0l�u00
u

� �
g�1

g

� �
ð1�M

2

l Þ
g
�ð1�M

2

0Þ
g

ð1�M
2

l Þ
g�1
�ð1�M

2

0Þ
g�1

" #
: (B.8)
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B.2. Reflection and transmission coefficients

Application of Eq. (B.8) and mass and energy conservation to a compact region with mean temperature and cross-
sectional area jump results in the following reflection and transmission coefficients:

R

I
¼

GUðA0=AlÞþYL
LX�GPðA0=AlÞ

,
T

I
¼

UXþPL
PG�YXðAl=A0Þ

, (B.9)

where

G¼ 1�
1

r lc l

gp0

Mlcl

ðC�1Þ, (B.10)

L¼ 1�
1

r0c0

gp0

M0c0

ðC�1Þ, (B.11)

X¼�1�
1

r0c0

gp0

M0c0

ðC�1Þ, (B.12)

C¼
g�1

g

� �
ð1�M

2

l Þ
g
�ð1�M

2

0Þ
g

ð1�M
2

l Þ
g�1
�ð1�M

2

0Þ
g�1

" #
, (B.13)

Y¼
g

g�1

p0

r lc l
þ

g
g�1

M0c0 1þ
r0c0

r lc l
M

2

0

� �
, (B.14)

U¼�
g

g�1

p0

r0c0
�M0c0

2g�1

g�1
�

1

2
M0

Al

A0
�1

� �
ð1þM0Þ

� �
, (B.15)

P¼
g

g�1

p0

r0c0
þM0c0

�1

g�1
�

1

2
M0

Al

A0
�1

� �
ð1þM0Þ

� �
: (B.16)

Appendix C. Relative significance of acceleration of density inhomogeneities and steady heat communication
mechanisms

Different authors [2,3,30] refer to either the acceleration of entropy disturbances or of density disturbances as a
mechanism of sound generation. This appendix shows that reformulation of the source term D from Eq. (9) using density
disturbances rather than entropy disturbances does not change any arguments put forward in this paper, i.e. sound
generation by mean heat addition still dominates that of mean flow acceleration in the cases studied.

Eq. (9) can be rewritten in the following form:

D¼DuhcþD�shcþD�mfa, (C.1)

where

D�shc ¼�
qAðg�1Þ

ðgÞp ðruu0 þp0Þ
p0

p
þ

u0

u

� �
�

A

r
dr
dx

p0 u0 þ
up0

rc2

 !
, (C.2)

D�mfa ¼�Au
du

dx
u0 þ

up0

rc2

 !
r0: (C.3)

This appendix presents an approximate analytical comparison of the source terms in Eq. (C.1) associated with the steady
heat communication and mean flow acceleration at high frequencies. The results are applicable to low mean Mach
numbers only. It is clear from the definition of D�shc and D�mfa that both of these terms are present in the flow at case A, while
D�mfa=0 throughout the flow in case B. Thus, the present analysis considers only case A.

Eqs. (1) and (2) can be linearised and combined to give

qp0

qx
þru

qu0

qx
þðru0 þur0Þdu

dx
þr qu0

qt
¼ 0: (C.4)

By expressing density disturbances as entropy and pressure disturbances, see Section 1, Eq. (C.4) can be expressed as

r qu0

qt
þ

qp0

qx
þru

qu0

qx
�

ru

cp
s0�ru0�

M

c
p0

 !
du

dx
¼ 0: (C.5)
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C.1. High frequency limit

In the limit of infinite forcing frequency it has been shown in Ref. [13] that js0j-0 in all cases studied here. Consider
high forcing frequencies satisfying la5 l where la is the acoustic wavelength. It can be then argued that

qð Þ
qx

C
ð Þ

la
C

o
c
ð Þ,

qð Þ
qt

Coð Þ: (C.6)

Further, for mean quantities

dð Þ

dx
C

Dð Þ
l
: (C.7)

Substituting expressions (C.6) and (C.7) into (C.5) then results in

p0C
rc½ðMþ1ÞoþDu=l�

oþMDu=l
u0 þ

rcuDu=cpl

oþMDu=l
s0: (C.8)

It is clear from relation (C.8) that the second term on the right hand side approaches zero at infinite frequency. In this limit
relation (C.8) then simplifies at low Mach numbers to

p0

p
CgM

u0

u
: (C.9)

Substitution of relation (C.9) into Eq. (C.3) reveals after some algebra that

D�mfaC�
ADur

l
Mu

02: (C.10)

Similarly, assuming a low Mach number mean flow, relation (C.2) becomes approximately

D�shcC�g
ADy
yl

rcMu
02: (C.11)

Further, for case A in the low Mach number limit, Eq. (2) indicates that the mean pressure can be assumed constant.
Therefore it follows from the ideal gas law that r dr=dxC�y dy=dx. Combining this with continuity of mass and using
relation (C.6) gives

Du

u
C

Dy
y
: (C.12)

Applying relation (C.12) to relations (C.10) and (C.11) then results in

D�shc

D�mfa

����
����C g

M
, (C.13)

which should hold at any given streamwise position in the inhomogeneous region.
Fig. 8 presents the spatially averaged value of the right hand side of relation (C.13), 1=l

R l
0 g=M dx. It also compares this

theoretical result with O� ¼ 1=l
R l

0 D�shc=D�mfa dx, calculated by using the flow solver for the configuration in case A. The
forcing frequency in each numerical simulation was chosen such that la=lo0:2 always. Further, entropy generation was
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Fig. 8. Comparison between the analytical scaling and numerical simulation of O� at high frequency and in case A for (a) stagnation temperature ratio of

2 and (b) stagnation temperature ratio of 3.
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negligible at these frequencies. As can be seen in Fig. 8, theory and simulation are in very good agreement over the lower
Mach number region, as was assumed in deriving the theoretical results.

It follows that at low Mach numbers and high forcing frequencies, the dominant source terms involve steady heat
communication, and the effect of the source terms related to the acceleration of the mean flow is small. However, at close
to sonic conditions the two sets of source terms have more comparable strength.

C.2. Low frequency limit

As o-0 the generation of entropy within the heat communicating region is significant [13]. Acceleration of these
entropy disturbances then generates sound though the D�mfa source term and also greatly complicates the scaling analysis.
Further, the numerical simulation takes longer to converge as o-0. Therefore, in this section we only present numerical
results for O� at frequencies such that lc=l¼ 2 always, where lc is the convective wavelength. It is noted that further
decreases in the forcing frequency does not change the result significantly. Fig. 9 shows that in the low frequency limit the
two sets of source terms D�mfa and D�shc have similar strength.
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